-English -EN Settings

Not signed-in

My links

Settings

Please select your country!

{{group.Text}}

{{"ifind_go-back" | translate}}

{{group.Text}}

Redefining design with additive manufacturing

Innovation 2018-05-24 Åsa Backman Oskar Omne

Sandvik Additive Manufacturing, with it’s base in Sandviken, Sweden, serves the whole Sandvik Group and has the ability to provide a complete offer, from idea to finished product, in a phase where many companies are starting to realize the benefits of additive manufacturing (AM).

​Sandvik Additive Manufacturing is the Sandvik Group’s latest product area and it’s constantly developing and growing with more resources, capabilities, employees and customer requests, as the competitive landscape within additive manufacturing rapidly evolves.

“The metal additive manufacturing market is still very young and small, but it is an attractive high-growth market. In 2015, metal additive manufacturing was just beginning to move beyond an R&D and prototyping tool, into a manufacturing tool. In 2017, the move towards becoming a full-fledged production technology has accelerated, for example within aerospace, medical and tooling”, says Kristian Egeberg, President of Product Area Additive Manufacturing at Sandvik Machining Solutions, the business area Sandvik Coromant belongs to.

Mikael Schuisky, Operation Manager at Sandvik Additive Manufacturing, says Sandvik Group has a unique position.

“The Sandvik Group has the competence to provide a complete offer, from idea to finished product,” he says, also referring to the business area Sandvik Materials Technology, that is a world-leading supplier of metal powder used in additive manufacturing. “You can’t find many other companies with competence in everything from in-house powder production and development, AM-design, AM process selection  and leading expertise in post processing-technologies, such as machining or sintering.”

Sandvik Group’s capability within both additive manufacturing and traditional, subtracting manufacturing through CNC machining, is also unique, says Egeberg, referring to Sandvik Materials Technology neighbor in Sandviken, Sandvik Coromant.

“Additive manufacturing is fantastic for certain applications, but for others, subtractive manufacturing will remain more cost-efficient,” he says. “We have the competence in-house to offer products and advice related to both areas.”

Schuisky says the initial discussion with customers around manufacturing method is central.

​“Ask a metal cutting company and then a printing company, and you will get completely different answers to the most suitable manufacturing method for your component,” he says. “As we have competence in both methods, our customers will get unbiased recommendations.”

Generally, additive manufacturing is the better choice when producing components with complex designs.

“Additive manufacturing totally redefines our approach to design and to what’s possible to produce in one piece, but it takes an open mind and quite some designing skills,” Schuisky says.

To clarify, he shows a component made from traditional metal cutting, and its equivalent, additively manufactured. They look like two completely different components.

​“With a true understanding of what the component must achieve, you can design the part with structural strength and toughness exactly where it’s needed, without the restraints from traditional manufacturing design,” Schuisky explains. “Printing something that is designed for subtractive machining just doesn’t give you those advantages.”
Sustainability is a driving force
Components benefitting from being light will also find advantages in additive manufacturing. Weight reduction is a constant key issue for the aerospace industry, driven both by fuel cost and carbon footprint. The same is true for cars and trucks, and everything else that moves.

“Fuel consumption is one thing, but don’t forget handheld tools and other things that we are carrying, where a lighter weight would save shoulders and backs,” Schuisky says.

Apart from reduced fuel consumption and health wins, additive manufacturing offer several additional advantages. Fewer transports and production steps than traditional manufacturing, as well as the fact that it utilizes a lot less material than traditional manufacturing, both thanks to the design that requires less material, and to the actual production.

“When printing a component, approximately 95 percent of the powder you put into the process is used; the rest can be recycled in a new melt,” Schuisky says. “Compare that to traditional manufacturing where you start off with a chunk of material and reduce large amounts of chips.”

The possibilities with additive manufacturing are growing as the technologies mature. Meanwhile, Egeberg, Schiusky and their colleagues are fine-tuning the offering to ensure that it provides as much value for the customers as possible.

“Metallurgists, world leading powder producers, post processing and metal cutting experts. With 150 years in the metal industry, few understand the additive manufacturing value chain like we do. We have also made extensive investments in Research & Development in different AM process technologies the recent years – and today, we’re developing components for industrial use”, Egeberg concludes.

The additive manufacturing pow(d)er

Without the right powder, additive manufacturing wouldn’t work. The quality and properties of the powder strongly influences the properties of the component. Simply put, there are three major aspects to consider: Selection of raw material, particle size and morphology.

There are five major alloy groups used in the additive manufacturing processes today; steel, cobalt chrome, nickel, aluminum and titanium.

“Depending on the manufacturing method and specification, the melt is transformed into the correct particle size and morphology in a so-called gas atomization process,” explains Peter Harlin, Senior Engineer at Powder Technology R&D at Sandvik Materials Technology. “Depending on what additive manufacturing process the powder is going to be used in, it needs to be sized so the powder particles can be used in the process.

“As an example, powder bed fusion laser requires the smallest particle sizes – down to a few microns, while directed energy deposition machines can handle substantially larger particle sizes – around 100 microns.”

​This is also confirmed by Lars-Erik Rännar, Research leader for Additive Manufacturing at Sports Tech Research Centre, Mid Sweden University , who means that a clear trend going forward is the introduction of new alloys and tailored powder for additive manufacturing.

“For Sandvik, with their metallurgical expertise along with a comprehensive competence within powder solutions and additive manufacturing, this is a natural development. I am looking forward to ordering tailored powder from them in the future,” Rännar says.

 

 

Flying the friendlier skies/SiteCollectionImages/stories/Innovation/INN_CleanSky_01.jpghttp://coromantadmin.prod.tibp.sandvik.com/en-gb/mww/pages/inn_cleansky.aspx0x010100C568DB52D9D0A14D9B2FDCC96666E9F2007948130EC3DB064584E219954237AF3900FFEB28D1E96F42FE90C43C7046D97B76001AE87415E190364F827B87CF05A00ED9Flying the friendlier skiesWhen Airbus introduced its latest concept aircraft at the 2017 Paris Air Show – a high-speed winged helicopter called the Racer – it showed that the future of aviation may look very different to what we’re used to. The helicopter is part of EU’s successful Clean Sky initiative for new emission-cutting designs, technologies and ideas for the aerospace industry. InnovationBelgium
Chain reaction/SiteCollectionImages/stories/Innovation/INN_CarolineFontura_01.jpghttp://coromantadmin.prod.tibp.sandvik.com/en-gb/mww/pages/ins_chainreaction.aspx0x010100C568DB52D9D0A14D9B2FDCC96666E9F2007948130EC3DB064584E219954237AF3900FFEB28D1E96F42FE90C43C7046D97B76001AE87415E190364F827B87CF05A00ED9Chain reactionCalifornia artist Carolina Fontoura Alzaga takes the adage “One man’s trash is another man’s treasure” to heart, creating high-end chandeliers from discarded bicycle parts. RecyclingInnovationUnited States
Drive my car/SiteCollectionImages/stories/Inspiration/INS_Selfdrivingcar_01.jpghttp://coromantadmin.prod.tibp.sandvik.com/en-gb/mww/pages/inn_selfdrivingcar.aspx0x010100C568DB52D9D0A14D9B2FDCC96666E9F2007948130EC3DB064584E219954237AF3900FFEB28D1E96F42FE90C43C7046D97B76001AE87415E190364F827B87CF05A00ED9Drive my carThe technology he learned as a teenage hacker, George Hotz is now using on the self-driving car he has finished ahead of the automotive pack. AutomotiveInnovationUnited States
Seeds as lubricants/SiteCollectionImages/stories/Innovation/GRUND INN_Rovereto_16.jpghttp://coromantadmin.prod.tibp.sandvik.com/en-gb/mww/pages/inn_vegetableoil.aspx0x010100C568DB52D9D0A14D9B2FDCC96666E9F2007948130EC3DB064584E219954237AF3900FFEB28D1E96F42FE90C43C7046D97B76001AE87415E190364F827B87CF05A00ED9Seeds as lubricantsGreen and efficient, lubro-refrigerant vegetable-based oils have taken the place of mineral oils in CNC milling machines at the Sandvik Coromant R&D centre in Rovereto, Italy. InnovationItaly

We use cookies to enhance the experience on our website. More about cookies.